TEORIAS E FILOSOFIAS DE GRACELI 229
- Gerar link
- X
- Outros aplicativos
DIMENSIONALIDADE DE ESTADOS DE TRANSIÇÕES DE GRACELI - NO SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIM
segunda-feira, 26 de agosto de 2019
SE TEM DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI DE:
ESTADOS MUTÁVEIS TRANSCENDENTES DE GRACELI - DE ESTRUUTURAS [isótopos, átomos, elétrons e outros] , FENÔMENOS, ENERGIAS, INTERAÇÕES, DIMENSÕES FENOMÊNICAS DE GRACELI, E INTERAÇÕES ENTRE TODOS =
E CONFORME O SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
X
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
OS ESTADOS TRANSICIONAIS GRACELI PODEM SER DIVIDIDOS EM CLASSIFICADOS EM TABELA ESPECÍFICAS PARA NÍVEIS , TIPOS, POTENCIAIS, TEMPO DE AÇÃO [CATEGORIAS DE GRACELI], E DENTRO DE UM SISTEMA DECADIMENSIONAL FENOMÊNICA DE GRACELI.
OS ESTADOS TRANSICIONAIS GRACELI SE FUNDAMENTAM EM QUE CADA TIPO DE ELEMENTO QUÍMICO, ÁTOMO, ISÓTOPOS POSSUEM VARIAÇÕES E INTERAÇÕES ESPECÍFICAS DE TRANSIÇÕES, LEVANDO EM CONSIDERAÇÃO:
OS ISÓTOPOS CONSTITUEM ESTADOS DE ENERGIAS, DE ESTRUTURAS, DE TRANSIÇÕES E ESTADOS QUÂNTICO.
ONDE CADA UM TEM OS SEUS PRÓPRIOS POTENCIAIS ESPECÍFICOS DE TRANSIÇÕES DE ENERGIAS E ESTADOS QUÂNTICO CONFORME A SUA CONSTITUIÇÃO E ESTADO ESTRUTURAL ATÔMICO, LEVANDO A TEREM POTENCIAIS ESPECÍFICOS DE TRANSIÇÕES DE ENERGIAS. [TODOS OS TIPOS DE ENERGIAS].
E QUE VARIAM CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI. [SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
COM ISTO ABRINDO PARA UM OUTRO TIPO DE TEORIA E MECÂNICA QUÂNTICA FUNDAMENTADA EM ENERGIAS, ISÓTOPOS E SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
TEORIA QUÂNTICA GRACELI DE POTENCIAL TRANSIÇÃO DE ESTADOS QUÂNTICO ISOTÓPICO - NO SDCTI GRACELI.
X
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
A ENERGIA NÃO ESTÁ RELACIONADA À MASSA, POIS, A QUANTIDADE E A DENSIDADE NÃO DETERMINA TODAS AS QUALIDADES E POTENCIAIS DE AÇÕES QUE UM DETERMINADO ELEMENTO QUÍMICO OU ISÓTOPO POSSA TER.
OU SEJA, A ÁGUA É DIFERENTE DO ÓLEO.
UM CRISTAL DE UM URÂNIO.
UM HÉLIO DE UM TRÍTIO.
OU SEJA, TANTO A QUANTIDADE E A DENSIDADE NÃO DETERMINAM AS ENERGIAS QUE EXISTEM EM DETERMINADA QUANTIDADE.
OU MESMO ESTANDO NUM SISTEMA DINÂMICO COMO A VELOCIDADE DA LUZ, POIS A VELOCIDADE PODE TRAZER TRANSFORMAÇÕES, MAS DETERMINA OS TIPOS DE TRANSFORMAÇÕES QUE POSSAM OCORRER DENTRO DOS ELEMENTOS QUÍMICO E ISÓTOPOS.
COM ISTO SE TEM O SISTEMA DE CATEGORIAS E DIMENSÕES DE GRACELI.
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
TEORIA E SISTEMA DA INDETERMINALIDADE CTEGORIAL TRANSCENDENTE E DECADIMENSIONAL DE GRACELI.
Conforme as estruturas, energias, fenômenos se tem transições específicas de estados físicos, estados quãntico, e estados categorias de Graceli.
e conforme o SDCTI GRACELI -DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
todas as estruturas, energias, fenômenos e dimensões fenomênicas categoriais Graceli de interações e transições de estados possuem especificidades conforme o SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI - DE INTERAÇÕES EM CADEIAS E DIMENSÕES FENOMÊNICAS.
e conforme o SDCTI GRACELI -DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
todas as estruturas, energias, fenômenos e dimensões fenomênicas categoriais Graceli de interações e transições de estados possuem especificidades conforme o SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI - DE INTERAÇÕES EM CADEIAS E DIMENSÕES FENOMÊNICAS.
sem interação potencial entre partículas, a variação de energia interna pode ser determinada por
, sendo Q reversível
A entropia física, em sua forma clássica é dada por:
Fórmula da Condução no semicondutor representa-se por:
onde
– condutividade
- q – módulo da carga elétrica do electrão
- n – concentração de elétrons
- p – concentração de lacunas
- μn – mobilidade dos elétrons (1350 cm2/(V.s))
- μp – mobilidade das lacunas (500 cm2/(V.s))
Esta é a equação da lei básica para a radioatividade.
tunelamento quântico
Em física, a unidade de energia no sistema de unidades naturais conhecida como unidades de Planck é chamada a energia de Planck, notada por EP.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.
TODA PARTÍCULA TEM O SEU TEMPO ESPECÍFICO CONFORME O SDCTI-GRACELI, COM ISTO SE TEM UMA RELATIVIDADE EM RELAÇÃO ÀS PARTÍCULAS SUAS PRODUÇÕES DE FENÔMENOS E ENERGIAS CONFORME O SDCTI GRACELI.
TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
COM ISTO SE FORMA UMA INTERACIONALIDADE DUAL FENÔMENOS PARTÍCULAS, OU UM SISTEMA INTEGRADO ENVOLVENDO TEMPO ESPECÍFICO E FENÔMENOS ESPECÍFICOS, EM PARTÍCULAS E ONDAS ESPECÍFICAS.
O TEMPO NÃO SE MEDE DE UM MOMENTO A OUTRO, MAS DE FLUXOS ALEATÓRIOS ESPECÍFICOS DE GRACELI.
OU SEJA, SE TEM UM INTERACIONALUDADE GENERALIZADA FRENTE A APENAS UM SISTEMA DUal ONDAS-PARTÍCILAS.
RELATIVIDADE GRACELI GENERALIZADA TEMPORAL -CORPUSCULAR-FENOMÊNICA-ENERGÉTCIA-DECADIMENSIONAL CATEGORIAL GRACELI.
/
GENERALIDADES ESPECÍFICAS / PARTÍCULAS..
ENERGIA = MATÉRIA X SDCTI GRACELI DE CADEIAS DE INTERAÇÕES E DIMENSÕES FENOMÊNICAS.
OS ASTRS FORMAM UMA CALDA MAGNÉTICA QUANDO PRÓXIMOS DO SOL, ESTA CALDA QUE CHEGA ATÉ A TERRA DURANTE ECLIPSES E QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA TERRA E COM EFEITOS E PRODUÇÃO DE TERREMOTOS, ERUPÇÕES DE VULCÕES, E MAREMOTOS.
PRINCÍPIO GRACELI DA INTERPOSIÇÃO
quase em todos eclipses lunar total ocorrem fenômenos na terra como terremotos, maremotos, e erupções de vulcões, [isTO os antigos já tinham observado esta relação].
MAS, O QUE CAUSA ESTA RELAÇÃO?
É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.
SENDO QUE NO VERÃO E NA FASE DE AFÉLIO [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA SE TORNA MAIOR.
O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.
OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.
COMO FENÔMENSO DE:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.
COMO SE ENCONTRA ABAIXO.:
PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES
QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.
OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.
OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].
OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE, E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.
COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.
VEJAMOS ABAIXO.
um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.
pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.
ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.
LOGO, SE TEM UMA TRANSCENDENTALIDADE INDETERMINADA .
COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.
OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.
COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI.
E COM VARIÁVEIS CONFORME O SDCTI-GRACELI -
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.
COMO TAMBÉM TRANSIÇÕES DE :
E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.
TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].
CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.
OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.
SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =
X SDCTI - GRACELI
CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.
OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.
E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:
X
X SDCTI - GRACELI
SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E INDETERMINISTA GRACELI.
RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.
PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.
DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.
OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.
ESTADO QUÂNTICO EXCITADO E [OU] NORMAL
=
X SDCTI - GRACELI
SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
MAS, O QUE CAUSA ESTA RELAÇÃO?
É SIMPLES, A RADIAÇÃO SOLAR QUE TEM INFLUÊNCIA SOBRE O MAGNETISMO DA LUA, COMO TAMBÉM DA TERRA E DE OUTROS PLANETAS MAIS PRÓXIMOS [MERCÚRIO E VÊNUS], CARREIA ESTE MAGNETISMO PELO ESPAÇO ATÉ A TERRA, E QUE TEM INFLUÊNCIA DIRETA NA TERRA.
SENDO QUE NO VERÃO E NA FASE DE AFÉLIO [MAIOR PROXIMIDADE TRANSLACIONAL DO PLANETA AO SOL] ESTÁ INFLUÊNCIA SE TORNA MAIOR.
O MESMO ACONTECE EM FENÔMENOS EM ESCALA ATÔMICA, EM ELÉTRONS, PRÓTONS, NÊUTRONS, E OUTROS. [QUANDO UMA PARTÍCULA EMPARELHA E FICA NA FRENTE DA OUTRA.
OU MESMO COM INFLUÊNCIA EM FENÔMENOS TERMODINÂMICOS, QUÂNTICO, MECÃNICOS, ACUSTICOS, E OUTROS.
COMO FENÔMENSO DE:
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
E
COM VARIAÇÕES CONFORME O SISTEMA DECADIMESIONAL E CATEGORIAL GRACELI.
COMO SE ENCONTRA ABAIXO.:
PARADOXO DA PULGA DE GRACELI -3, E O PRINCÍPIO DA INDETERMINALIDADE TRANSCENDENTE DE GRACELI - NO SDCTI - CADEIAS DE INTERAÇÕES
QUE TRATA DO ESTADO TRANSCENDENTE DAS PARTÍCULAS, ENERGIAS E FENÔMENOS E CONFORME O SDCTI -GRACELI.
OU SEJA, IMAGINE MILHARES DE PULGAS DEBAIXO DE UM TAMPA DE GARRAFA, AO LEVANTAR A TAMPA AS PULGAS SALTAM PARA TODOS OS LADOS [SALTO QUÂNTICO], COM INTENSIDADES, ALCANCES, E OSCILAÇÕES DIFERENTES.
OU SEJA SE TEM UMA REALIDADE VISUAL E INDETERMINADA TRANSCENDENTE DA REALIDADE, POREM, SE TEM OUTRA REALIDADE NÃO VISUAL, MAS INDETERMINADA DAS PULGAS DEBAIXO DA TAMPA, POIS MESMO SEM SEREM VISTAS ELAS ESTÃO VIBRANDO [ ENERGIAS, ÍONS E ELÉTRONS], NUM FLUXO TRANSCENDENTE [ESTADO TRANSCENDENTE INDETERMINADO DA MATÉRIA E ENERGIA E FENÔMENOS].
OU SEJA, SE TEM DUAS PERSPECTIVA DA REALIDADE A VISUAL E INDETERMINADA TRANSCENDETE, E A NÃO-VISUAL, POREM, SE TEM CONHECIMENTO DE QUE AS PULGAS VIBRAM E SALTAM ALEATORIAMENTE, MESMO DEBAIXO DA TAMPA.
COM ISTO SE TEM UMA INCERTEZA TRANSCENDENTE SOBRE O PRINCÍPIO DA INCERTEZA [MOMENTUM-POSIÇÃO OBSERVADOR] ,DA PULGA, E DO PRINCÍPIO DA EXCLUSÃO.
VEJAMOS ABAIXO.
um mesmo férmion idêntico não podem ocupar o mesmo estado quânticosimultaneamente.
pois, um férmion é feito de infinitas e ínfimas partes em processos variados de transformações, mutações e transcendência, como também o tempo de processamento e aceleração é único para cada parte destas dentro de um mesmo férmion.
ou seja, se torna transcendente e indeterminado DENTRO DO PRÓPRIO FÉRMION, E COMO TAMBÉM EM RELAÇÃO AO TEMPO DE PROCESSAMENTO DE CADA ÍNFIMA PARTE.
LOGO, SE TEM UMA TRANSCENDENTALIDADE INDETERMINADA .
COM ISTO TAMBÉM NÃO É POSSÍVEL DETERMINAR NEM O MOMENTUM E NEM A POSIÇÃO DOS ÍNFIMOS PROCESSOS DENTRO DE UM MESMO FÉRMION.
OU SEJA, SE TEM UMA INDETERMINALIDADE GENERALIZADA, E NÃO DA POSIÇÃO EM RELAÇÃO AO MOMENTUM E VICE-VERSA [PRINCÍPIO QUÂNTICO DA INCERTEZA], MAS SIM , DE INCERTEZA DE TODOS OSFENÔMENOS, E NÃO DE UM EM RELAÇÃO AO OUTRO, OU EM RELAÇÃO À OBSERVADORES.
COM ISOT TEM UM SISTEMA QUE SUBSTITUI TANTO A INCERTEZA MOMENTUM-POSIÇÃO, QUANTO A EXCLUSÃO DE PAULI.
E COM VARIÁVEIS CONFORME O SDCTI-GRACELI -
DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
CAMINHOS, DIREÇÕES E SENTIDOS, FLUXOS, FASES E EVOLUÇÕES, POSIÇÕES ESPACIAIS E TEMPORAIS, E OUTRAS. INTENSIDADE E HIPER-INTENSIDADE DE ENERGIAS., capacidades de ENTROPIAS E ANTALPIAS, VARIAÇÕES DE ESTADOS FUNDAMENTAIS, QUÂNTICO, EXCITADO, HIPER-EXCITADO DE GRACELI.
POTENCIAL DE TUNELAMENTO, ENTROPIA, EMARANHAMENTO, FLUXOS ALEAÓRIOS, TRANSCENDÊNCIA DE ESTADO QUÂNTICO, ESTADO DE ENERGIA E DA MATÉRIA, ESTADOS FENOMÊNICOS E DE ENERGIA DE GRACELI, E OUTROS.
COMO TAMBÉM TRANSIÇÕES DE :
E DIMENSÕES FENOMÊNICAS EXTRAS DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
OS CAMINHOS E FLUXOS COM FASES DE EVOLUÇÕES DOS PROCESSOS FÍSICOS QUÂNTICO LEVAM A REALIDADES INTERMEDIÁRIAS E FASES DE EVOLUÇÕES.
TEORIA GRACELI DE ESTADOS CATEGORIAS E DECADIMENSIONAIS TRANSICIONAIS E INTERAÇÕES [SDCTI - GRACELI].
CONFORME OS ESTADOS DE ENERGIAS E SUAS CATEGORIAS, ESTADOS DE FENÔMENOS, ESTADOS DE ESTRUTURAS, E ESTADOS POTENCIAIS E EVOLUÇÃO DE DESENVOLVIMENTO SE TEM REALIDADES QUÂNTICA.
OU SEJA, SE TEM UMA RELATIVIDADE INDETERMINISTA DENTRO DE UM UNIVERSO DE ESTADOS CATEGORIAS E DECADIMENSIONAIS E SUAS POTENCIALIDADES DE CAMINHOS DE EVOLUÇÃO, PROCESSOS E DESENVOLVIMENTOS DESTES CAMINHOS, E REALIDADES DE FENÔMENOS CONFORME OS POTENCIAIS.
SQTIC GRACELI = SALTO QUÂNTICO TRANSCENDENTE INDETERMINADO CATEGORIAL GRACELI =
X SDCTI - GRACELI
CONFORME A CONGRUÊNCIA E APROXIMAÇÕES DE ENERGIAS, CATEGORIAS DE PARTÍCULAS E FENÔMENOS É POSSÍVEL ACONTECEREM SALTOS SOBRE ÓRBITAS ATÔMICA DE UMA SÓ VEZ, E MESMO SAIR DE DENTRO DOS PRÓPRIOS ÁTOMOS.
OU SEJA, É COMO UMA PULGA QUE SALTA GRANDES OBSTÁCULOS DE UMA SÓ VEZ, LEVANDO A UM SISTEMA INDETERMINADO DA INTENSIDADE E ALCANCE DO SALTO.
E COM ISTO TENDO UMA INDETERMINALIDADE ENTRE MOMENTUM, POSIÇÃO, INTERAÇÕES, TRANSFORMAÇÕES E O SISTEMA DE INTERAÇÕES DE CADEIAS ENVOLVENDO E SOBRE:
X
X SDCTI - GRACELI
SDC -TI GRACELI -SISTEMA DECADIMENSIONAL CATEGORIAL TRANSICIONAL E DE CADEIAS DE INTERAÇÕES E INDETERMINISTA GRACELI.
O SDCTI-GRACELI -CADEIAS DE INTERAÇÕES SE FUNDAMENTA EM DEZ DIMENSÕES FÍSICAS E UM SISTEMA DE CATEGORIAS.
FORMANDO UM SISTEMA RELATIVO CATEGORIAL TRANSCENDENTE E INDETERMINADO [DECADIMENSIONAL E CATEGORIAL GRACELI].
É BOM RESSALTAR QUE OS FENÔMENOS NÃO VARIAM EM FUNÇÃO DO TEMPO, OU VARIAÇÕES EM RELAÇÃO AO ESPAÇO, MAS SIM EM RELAÇÃO AO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
RELATIVIDADE QUÂNTICA CATEGORIAL GRACELI - INDETERMINADA E TRANSCENDENTE.
PARADOXO GRACELI CATEGORIAL DA INDETERMINALIDADE DE ESTADO QUÃNTICO.
DENTRO DO SISTEMA CATEGORIAL É IMPOSSÍVEL DE DETERMINAR QUAL NÍVEL E TIPO DE ESTADO QUÂNTICO EM QUE SE ENCONTRA UMA PARTÍCULA, COMO TAMBÉM ENERGIAS, FENÔMENOS, MOMENTUM, E DIMENSÕES.
OU SEJA, SE TEM COM ISTO QUE COM AS CATEGORIAS E O SISTEMA DECADIMENSIONAL EXiSTE UMA INDETERMINALIDA ABSOLUTA, TANTO PARA DETERMINAR ESTADO EXCITADO E SEUS NÍVEIS, POTENCIAIS E INTENSIDADE DE INTERAÇÕES, COMO TAMBÉM SE ESTÁ EM ESTADO QUÃNTICO NORMAL DE SALTOS DE POTENCIAIS, E OU OUTROS.
ESTADO QUÂNTICO EXCITADO E [OU] NORMAL
=
X SDCTI - GRACELI
SDC GRACELI - SISTEMA DECADIMENSIONAL E CATEGORIA GRACELI - TRANSCENDENTE E INDETERMINADO.
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ ABSORÇÕES E EMISSÕES INTERNA ⇔ transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, E OUTROS.
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
TODA INTERAÇÃO PRODUZ TRANSFORMAÇÕES, E VICE-VERSA, ALTERANDO E TRANSCENDENDO ENERGIAS, MASSA, CAMADAS ORBITAIS, FENÔMENOS , DINÃMICAS, E OUTROS, CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL DE PADRÕES DE GRACELI.
TRANSFORMAÇÕES ⇔ INTERAÇÕES = Δ ENERGIAS, Δ MASSA , Δ CAMADAS ORBITAIS , Δ FENÔMENOS , Δ DINÂMICAS, Δ VALÊNCIAS, Δ BANDAS, E OUTROS.
conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.
RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES = Δ ENERGIAS, Δ MASSA , Δ CAMADAS ORBITAIS , Δ FENÔMENOS , Δ DINÂMICAS, Δ VALÊNCIAS, Δ BANDAS, E OUTROS.
- X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG DXΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli.xsistema de transições de estados, e estados de Graceli,xT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
conforme as intensidade e tipos, potenciais e tempo de ação [categorias de Graceli] se tem variações de fluxos e vibrações de interações e transformações entre energias, cargas, ondas, íons e elétrons carregados de energias. e variável conforme o sistema decadimensional e categorial Graceli.
RELATIVIDADE GRACELI DE VIBRAÇÕES CATEGORIAS E DE PADRÕES DE INTENSIDADE E TIPOS DE ENERGIAS.
A VIBRAÇÃO TAMBÉM SE ENCAIXA NO SISTEMA DE PADRÕES CATEGORIAS GRACELI DE BAIXA, MÉDIA E ALTAS ENERGIAS.
RELATIVIDADE GRACELI DE ALTAS ENERGIAS PARA ESPECIFICIDADES E UNIDADES FÍSICAS E QUÍMICAS [ TRANSFORMATIVAS]., COMO TAMBÉM DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS, DE ENERGIAS DE GRACELI, ESTADOS FENOMÊNICOS DE GRACELI, ESTADOS QUÂNTICO, E OUTROS.
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, CONDUTIVIDADE, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI
A ESPECIFICIDADE DE CALOR, TRANSFORMAÇÕES, INTERAÇÕES, TUNELAMENTOS, EMARANHAMENTOS, DINÂMICAS, DIFRAÇÕES, E OUTROS, TEM OUTROS POTENCIAIS FENOMÊNICOS PARA UM SISTEMA DE ALTAS ENERGIAS. E QUE VARIA SE PROCESSA CONFORME O SISTEMA DECADIMENSIONAL E CATEGORIAL TRANSCENDENTE INDETERMINADO GRACELI .
RELATIVIDADE GRACELI DE ALTAS ENERGIAS.
NUM SISTEMA DE ALTAS ENERGIAS COMO PLASMAS TÉRMICO, RELÂMPAGOS, ALTO FORNO, BURACO NEGRO E OUTROS SE TEM OUTRA REALIDADE PARA VALORES DE VARIAÇÕES E TRANSFORMAÇÕES SOBRE INTERAÇÕES, EMISSÕES, ABSORÇÕES, ESPECIFICIDADES DE FENÔMENOS E ENERGIAS, TRANSFORMAÇÕES DE ISÓTOPOS E ESTRUTURA ELETRÔNICA, ESTADO QUÂNTICO E SALTO QUÂNTICO ,TUNELAMENTOS, EMARANHAMENTOS, CONDUTIVIDADE, SUPERCONDUTIVIDADE, SUPER DILATAÇÃO, E OUTROS, E VARIÁVEL CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
OS ESTADOS DE ENERGIAS DE GRACELI SÃO TODOS TIPOS DE ENERGIAS , COMO TÉRMICA, ELÉTRICA, MAGNÉTICA, DINÂMICA, LUMINOSA, DE INTERAÇÕES, DE TRANSFORMAÇÕES, E OUTRAS FORMAS E TIPOS DE ENERGIAS. SENDO QUE VARIA E É ESPECÍFICA PARA CADA TIPO DE ESTRUTURA, ISÓTOPOS, E OUTROS.
EM = ENERGIA E MASSA.
SDCG = SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI
EM X SDC G.=
EM =
X
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
VELOCIDADE ALTERA E MODIFICA ESTRUTURAS, ENERGIAS, FENÔMENOS, INTERAÇÕES, TRANSFORMAÇÕES, TEMPERATURA, MOMENTUM, E OUTROS FENÔMENOS E CONFORME O SISTEMA DECADIMENSIONAL CATEGORIAL GRACELI.
RELATIVIDADE DO MOVIMENTO E RELATIVIDADE CATEGORIAL GRACELI.
[VELOCIDADE, ROTAÇÃO E MOVIMENTO ANGULAR]
V [R] [MA] = Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
mecânica TRANSICIONAL Graceli se fundamenta nas mudanças de fases de estados, fases de isótopos, de estrutura atômica e molecular, [ FASES DE ESTADOS, ESTRUTURAS, ENERGIAS, FENÔMENOS E DIMENSÕES CATEGORIAIS] com variáveis de movimentos, interações, transformações, temperatura, densidade e pressão, e outros, e conforme o sistema decadimensional e categorial Graceli [SDC Graceli]. E FENÔMENOS E ENERGIAS E VARIAÇÕES DE ESTRUTURAS QUE ACONTECEM DENTRO DAS ESTRUTURAS E ENERGIAS.
um ferromagnético sendo derretido a 300 graus Celsius tem uma realidade física e química, e com variações quântica e orbitais, elétrica, termodinâmicas, mecãnicas, e outros diferentes de um derretimento a 350 graus.
o mesmo serve para outros materiais e com outras variações levando a um indeterminismo transcendente, categorial e decadimensional Graceli.
| ΤDCG |
X
Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
O sistema decadimensional e categorial Graceli pode ser visto como um outro ramo da física e da física, onde envolve condições da matéria e da energia, fenômenos e dimensões, realçados por categorias.
O único sistema que relaciona dez dimensões relacionadas com a matéria e suas energias, fenômenos e categoria.
Com isto pode-se dividir a física em quatro grandes fases:
a clássica, a quântica, a relatividade, e a categorial decadimensional Graceli.
teoria da relatividade categorial Graceli
ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.
x
sistema de dez dimensões de Graceli.
x
sistema de transições de estados, e estados de Graceli,
x
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Sobre padrões de entropia.
Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.
Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.
Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.
A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.
Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.
Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.
Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.
Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.
Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.
Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.
Princípio tempo instabilidade de Graceli.
Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo, e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.
Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.
as dimensões categorias podem ser divididas em cinco formas diversificadas.
tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
matriz categorial Graceli.
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
+
,
+
+
+

tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.
paradox of the system of ten dimensions and categories of Graceli.
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões
a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.
that is, categories ground the variables of phenomena and their interactions and transformations.
and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.
but structures are related to transitions of physical states, quantum, energies, phenomena, and others.
as well as transitions of energies, phenomena, categories and dimensions.
paradoxo do sistema de dez dimensões e categorias de Graceli.
um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.
ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.
e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.
mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.
como também transições de energias, fenômenos, categorias e dimensões
postulado categorial e decadimensional Graceli.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
D
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Sistema decadimensional Graceli.
1]Espaço cósmico.
2]Tempo cósmico e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quântico, relatividade de transições de estados quântico, estados de fenômenos, estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico. e estados de Graceli com suas especificidades de transições, conforme o sistema decadimensional e categorial Graceli transcendente e indeterminado, vejamos alguns:
Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.
De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.
E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.
E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.
Matriz categorial de Graceli.
T l T l E l Fl dfG l
N l El tf l
P l Ml tfefel
Ta l Rl
Ll
Dl
Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.
[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]
p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.
h e = quantum index and speed of light.
[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..
EPG = GRACELI POTENTIAL STATUS.
[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]
, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].
Coeficiente de transferência térmica no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOM.
terça-feira, 27 de agosto de 2019
O coeficiente de transferência térmica ou coeficiente de transferência de calor, em termodinâmica e em engenharia mecânica e química, é usado no cálculo da transferência de calor, tipicamente por convecção ou mudança de fase entre um fluido e um sólido:
- X
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde
- ΔQ = entrada de calor ou perda de calor, J
- h = coeficiente de transferência térmica, W/(m2K)
- A = área de superfície de transferência térmica, m2
= diferença na temperatura entre a área da superfície do sólido e a do fluido circundante, K
= período de tempo, s
Da equação acima, o coeficiente de transferência de calor é o coeficiente de proporcionalidade entre o fluxo de calor, Q/(AΔt), e a força condutora termodinâmica para o fluxo de calor (i.e., a diferença de temperatura, ΔT).
Existem numerosos métodos para o cálculo do coeficiente de transferência de calor em diferentes modos de transferência de calor, diferentes fluidos, regimes de fluxo, e sob diferentes condições termohidráulicas. Frequentemente pode ser estimado pela divisão da condutividade térmica do fluido em convecção por uma escala de comprimento. O coeficiente de transferência térmica é frequentemente calculado do número de Nusselt (um número adimensional).
Convecção forçada no SDCTI GRACELI -CADEIAS DE INTERAÇÕES E DIMENS. FENOM.
quarta-feira, 28 de agosto de 2019
Convecção forçada é um mecanismo ou tipo de transporte de calor no qual o movimento do fluido é gerado por uma fonte externa (como uma bomba, ventilador, dispositivo de sucção, etc.). Deve ser considerada como um dos principais métodos de transferência de calor útil como quantidades significativas de energia térmica calor podem ser transportadas de forma muito eficiente e este mecanismo é muito comumente encontrado na vida cotidiana, incluindo aquecimento central, ar condicionado, turbinas a vapor e em muitas outras máquinas. Convecção forçada é freqüentemente encontrada por engenheiros projetando ou analisando trocadores de calor, fluxos em tubulações, o fluxo sobre uma placa apresentando uma diferença de temperatura com o fluxo (no caso de uma asa de ônibus espacial durante a sua reentrada, por exemplo). No entanto, em qualquer situação de convecção forçada, uma certa quantidade de convecção natural está sempre presente, sempre que houver forças G presentes (ou seja, menos que o sistema está em queda livre). Quando a convecção natural não é desprezível, esses fluxos são geralmente referidos como convecção mista.
Quando analisa-se convecção potencialmente mista, um parâmetro denominado número de Arquimedes (Ar) parametriza a força relativa da convecção livre e forçada. O número de Arquimedes é a razão entre o número de Grashof e o quadrado do número de Reynolds, que representa a razão da força empuxo e força de inércia, e que determina a contribuição da convecção natural. Quando a Ar >> 1, a convecção natural domina, e quando Ar << 1, o domínio é da convecção forçada.
[1]
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Quando a convecção natural não é um fator significativo, a análise matemática com teorias de convecção forçada normalmente produz resultados precisos. O parâmetro de importância na convecção forçada é o número de Peclet, que é a razão de advecção (movimento por correntes) e difusão (movimento de alta a baixas concentrações) de calor.
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Quando o número de Peclet é muito maior do que a unidade (1), domina a advecção difusão. Similarmente, as razões muito menores indicam uma maior taxa de difusão em relação a advecção.
Convecção natural é um mecanismo, ou tipo de transporte de calor, no qual o movimento do fluido não é gerado por qualquer fonte externa (tal como uma bomba, ventilador, dispositivo de sucção, etc.) mas somente por diferenças de densidade no fluido ocorrendo devido a gradientes de temperatura. Em convecção natural, fluido circundante uma fonte de calor recebe calor, tornando-se menos densa e subindo. O fluido resfriante e circundante então move-se e o substitui. O fluido resfriante é então aquecido e o processo continua, formando uma corrente de convecção; este processo transfere energia térmica do fundo para o topo da célula de convecção. A força condutora para a convecção natural é a flutuabilidade (relacionada ao empuxo), um resultado de diferenças nas densidades de fluidos. Por causa disto, a presença de uma aceleração própria tais como surgindo da resistência à gravidade, ou uma força equivalente (surgindo da aceleração, força centrífuga ou força de Coriolis), é essencial para a convecção natural. Por exemplo, convecção natural essencialmente não opera em queda livre (ambientes inerciais), tal como aqueles da Estação Espacial Internacional, onde outros mecanismos de transferência de calor são requeridos para prevenir os componentes eletrônicos de aquecimento excessivo.
Convecção natural tem atraído grande atenção dos pesquisadores por causa de sua presença tanto na natureza quanto em aplicações de engenharia. Na natureza, células de convecção formam-se de ar elevando-se pelo aquecimento pela luz solar de solo ou água, são uma característica principal de todos os sistemas climáticos. Convecção é também vista nas plumas de ar quente elevando-se de ar quente de chamas, correntes oceânicas, e formação de ventos marítimos (onde convecção ascendente é também modificada pelas forças de Coriolis). Em aplicações de engenharia, convecção é comumente visualizada na formação de microestruturas durante o esfriamento de metais fundidos, e fluxos fluidos em torno de aletas de dissipação de calor, e lagoa solar. Uma aplicação industrial muito comum de convecção natural é a resfriamento por ar livre sem a ajuda de ventiladores: isto pode ocorrer desde pequenas escalas (chips de computador) a equipamento de processos de larga escala.
Teorização[editar | editar código-fonte]
Matematicamente, a tendência de um sistema particular através de convecção natural baseia-se no número de Grashof (Gr), o qual é uma razão de forças de flutuação e forças viscosas.[1]
O parâmetro
é a expansividade do volume (K−1), g é a aceleração devido à gravidade,
T é a diferença de temperatura entre a superfície quente e o corpo do fluido (K), L é o comprimento ou dimensão característica (isto depende do objeto) e ν é a viscosidade.
Para líquidos, valores de
são tabulados. Adicionalmente
podem ser calculados de:
(K-1)
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Entretanto,
para um gás ideal é simplesmente:
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Assim, o número de Grashof pode ser entendido como a razão do empuxo ascendente do fluido aquecido e a fricção interna retardando a descedência. Em fluidos muito aderentes e viscosos, o movimento do fluido é restrito, juntamente com a convecção natural. No caso extremo de viscosidade infinita, ainda mais em pequenas escalas, o fluido poderá não se mover e toda a transferência de calor se dará por condução térmica.
Uma equação similar pode ser escrita para convecção natural devido a um gradiente de concentração, algumas vezes chamado de convecção termo-solutal.[3] Neste caso, uma concentração de fluido quente difundindo-se em um fluido frio, da mesma maneira que tinta derramada em um recipiente com água difunde-se colorindo o espaço inteiro.
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
As magnitudes relativas dos números de Grashof e Reynolds determina qual forma de convecção domina, se
convecção forçada pode ser desprezada, enquanto se
convecção natural pode ser desprezada. Se a razão é aproximadamente um tanto convecção forçada e natural tem de ser levada em conta.
Convecção natural é altamente dependente da geometria da superfície quente, várias correlações existem de maneira a determinar o coeficiente de transferência térmica. O número de Rayleigh (
) é frequentemente usado, onde:
onde
é o número de Prandtl.
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Uma correlação geral que aplica-se para uma variedade de geometria é
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
O valor de f4(Pr) é calculado usando-se a seguinte fórmula
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Nu é o número de Nusselt e o valor de Nu0 e o comprimentos característicos usados para calcular Ra são listadas abaixo:
| Geometria | Comprimento característico | Nu0 |
|---|---|---|
| Plano inclinado | x (distância ao longo do plano) | 0.68 |
| Disco inclinado | 9D/11 (D = Diâmetro) | 0.56 |
| Cilindro vertical | x (altura do cilindro) | 0.68 |
| Cone | 4x/5 (x = distância ao longo da superfície inclinada) | 0.54 |
| Cilindro horizontal | 0.36 |
A correlação para o cálculo do número de Nusselt como mostrado aqui é dos autores Churchill e Thelen.[4] Neste artigo os autores propõe duas diferentes soluções correspondentes às equações (4) e (5). A correlação neste artigo corresponde a equação (4). Para cálculo de convecção natural e, diferentes formas o trabalho de Lee, Yovanovich e Jafarpur é recomendado.[5]
Convecção natural para uma placa vertical[editar | editar código-fonte]
Neste sistema calor é transferido de uma placa vertical para um fluido movendo-se paralelamente a ele por convecção natural. Isto irá ocorrer em qualquer sistema onde a densidade do fluido em movimento varia com a posição. Este fenômeno irá somente ser de significância quando o fluido em movimento é minimamente afetado pela convecção forçada.[6]
Quando considera-se o fluxo de fluido como um resultado de aquecimento, as seguintes correlações podem ser usadas, considerando-se o fluido como um diatômico ideal, adjacente a uma placa vertical a temperatura constante e o fluxo de fluido como completamente laminar.[7]
[7]
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Onde
- hm = coeficiente aplicável médio entre a borda inferior da placa e qualquer ponto a uma distância L (W/m². K)
- L = altura de uma superfície vertical (m)
- k = condutividade térmica (W/m. K)
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Onde
- g = aceleração gravitacional (m/s²)
- L = distânica acima da borda inferior (m)
- ts = temperatura da parede (K)
- t∞ = temperatura do fluido externa a camada limite térmica (K)
- v = viscosidade cinemática (m²/s)
- T = temperatura absoluta (K)
Quando o fluxo é turbulento entre diversas correlações envolvendo o número de Rayleigh (uma função tanto dos números de Grashof e Prandtl deve ser usada).[7]
Transferência de calor por convecção natural[editar | editar código-fonte]
Quando calor é transferido pela circulação de fluidos devido a flutuação devido a mudanças de densidade induzidas pelo próprio calor, então o processo é conhecido como convecção natural ou convecção livre.
Exemplos conhecidos são o fluxo ascendente de ar devido a um incêndio ou um objeto quente e circulação de água em uma panela, que é aquecida por baixo.
Para uma experiência visual de convecção natural, um copo cheio de água quente contendo corante alimentício vermelho pode ser colocado dentro de um aquário com água limpa e fria. As correntes de convecção do líquido vermelho serão vistas com a ascensão e movimento descendente também, então eventualmente revertem seu sentido, o que ilustra o processo como gradientes de calor são dissipados.
Estabelecimento da convecção natural[editar | editar código-fonte]
A convecção natural ocorre quando um sistema torna-se instável e consequentemente inicia-se um processo de mistura pelo movimento de massa. Uma observação comum de convecção é da convecção térmica em um recipiente de água fervente, na qual a água quente e menos densa na camada do fundo ergue-se em plumas, em movimentos de baixo para cima, e a água fria e mais densa perto do topo do pote igualmente afunda.
O estabelecimento do processo de convecção natural é determinado pelo número de Rayleigh (Ra). Este número adimensional é dado por
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde
é a diferença em densidade entre as duas parcelas de material que estão se misturando
é a aceleração gravitacional local
é o comprimento-medida característico de convecção: a profundidade do recipiente em ebulição, por exemplo
é a difusividade da característica que está causando a convecção, e
é a viscosidade dinâmica.
Convecção natural será mais provável e/ou mais rápido com uma maior variação em densidade entre os dois fluidos, uma maior aceleração devido a gravidade que impulsiona a convecção, e/ou uma distância maior através do meio convectivo. Convecção será menos provável e/ou menos rápida com uma difusão mais rápida (assim afastado o gradiente de difusão que está causando a convecção) e/ou um mais fluido viscoso ("espesso").
Para convecção térmica devido ao aquecimento de baixo, como descrito no recipiente fervendo acima, a equação é modificada para expansão térmica e da difusividade térmica. Variações de densidade, devido à expansão térmica são dadas por:
- x
- ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.+
+
,
+
+
+X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
onde
é a densidade referência, geralmente escolhida para ser a densidade média do meio,
é o coeficiente de expansão térmica, e
é a diferença de temperatura através do meio.
A inserção dessas substituições produz um número de Rayleigh que podem ser usado para prever a convecção térmica.[3]
- x
ENERGIA DE GRACELI = ENERGIA X POTENCIAIS X
x
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
X =ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- X
- DT l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Assinar: Postagens (Atom)
Assinar: Postagens (Atom)
Postado por cientista, teólogo e filósofo Ancelmo Luiz Graceli às 09:59
Assinar: Postagens (Atom)
- Gerar link
- X
- Outros aplicativos
Comentários
Postar um comentário